
Friction vs. damage: dynamic self-similar crack
growth revisited

Shiro Hirano

Abstract Seismological observational studies have revealed that earthquakes ex-
hibit dynamic self-similar crack growth constituting 50–90% of the shear wave ve-
locity. Remarkably, the peak slip velocity defined on the crack surface is scale-
invariant, even from M1 to M9 earthquakes. However, a classical self-similar crack
model with a singularity does not satisfy all the observed properties above. In this
chapter, we review these discrepancies and introduce friction and damage models to
solve them, which have been proposed in several numerical studies. We show that
velocity-dependent friction can fulfill some requirements of the observations, while
slip- or time-dependent friction cannot. We finally discuss the theoretical equiva-
lence of friction and damage model for a self-similar crack in terms of energetics,
which has previously only been implied by numerical studies.

1 Introduction: applications and limitations of a classical crack
model for earthquake mechanics

Earthquakes involve dynamic rupture propagation with speed of 2−3 km/s along
faults, which are shear cracks embedded in the Earth’s crust. To model this fault-
ing process mathematically, we need to define the amount of slip on faults as a
function of space and time and the magnitude of earthquakes. Let u(x, t) ∈ R3 be
displacement of the medium defined at position x ∈R3\Γ , where t is time since the
initiation of dynamic rupture and Γ is a fault surface. Then, we define slip D(x, t)
and slip velocity V (x, t) on Γ as
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D(x, t) := lim
ε↓0

u
(
x+ ενΓ , t

)
− lim

ε↑0
u
(
x+ ενΓ , t

)
, (1)

V (x, t) :=∂tD(x, t), (2)

respectively, where νΓ is a unit normal vector to Γ and D = V = 0 is assumed for
t ≤ 0. Earthquake size is quantified by the seismic moment, M0, originally defined
as[1]

M0 := µ
∫

Γ
|D(x,T )| dx,

where µ is the rigidity, and T is the duration of the earthquake, i.e., the amount of
time required to generate the final state of the earthquake process. By extending this
definition, the time-dependent seismic moment function M0(t) can be defined as

M0(t) := µ
∫

Γ
|D(x, t)| dx. (3)

The static M0 is proportional to the minimum value of elastic strain energy released
by the earthquake if the on-fault traction change is spatially constant; see Hirano[12]
and references therein for a precise review and practical problems with this rela-
tionship. Additionally, the (seismic moment) magnitude Mw := 2

3 (log10 M0 −9.1)
is widely employed.

The duration, T , can reach ∼ 102–103 s for M9 earthquakes, which are the largest
events on the earth, while T is at most ∼ 1 and ∼ 10−6 s for M4 (medium-sized in
nature) and M−8 (smallest events observed in the laboratory) earthquakes, respec-
tively. Hence, earthquake duration varies 109 fold from the smallest to the largest. A
question then arises: are the mechanisms of small, medium, and large earthquakes
fundamentally different? Alternatively, do they obey a universal law? In terms of
kinematics, the empirical relationship among them strongly suggests the existence
of a governing law. Over almost the entire range of natural and laboratory earth-
quakes, the seismic moment, M0, and corner frequency (or cutoff frequency in engi-
neering terminology), fc ∼ 1/T , show the following relationship: M0 ∝ f−3

c [24, 27].
In other words, T must scale as M0 ∝ T 3[15]. Moreover, this relationship is observed
not only in the final state but also in a temporal state as

M0(t) ∝ t3 (4)

at least for the Parkfield area in California[23] and Japan[20], which means that the
system is self-similar[5]. If the rupture propagation velocity is almost constant and
given as vr, the current crack radius is written as r = vrt, and the scaling relationship
(4) suggests that the macroscopic energy release rate, G := dM0/dA, of the system
satisfies

G ∝ F(vr)
dA2/3

dA
∝ F(vr)r = vrF(vr)t, (5)

where A(∝ r2) is the current area of the ruptured region. This proportionality (5)
and the function F are simply derived from modeling the self-similar expansion of
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circular and elliptic singular cracks (Section 6.9 of Broberg[6]). In fact, a zeroth-
order approximation of the earthquake faulting process has been provided by such
a singular self-similar crack model.

However, a precise comparison of observations and the singular crack model
reveals some discrepancies. In a traditional framework of linear elastic fracture me-
chanics, the energy release rate, G, must be balanced with the surface energy of
the material, 2γ . If γ is a material constant, the relationship (5) never balances with
2γ unless the rupture propagation velocity asymptotes towards the Rayleigh wave
speed, cR, for mode-II ruptures or the shear wave speed, cS, for mode-III ruptures,
because limvr→cR,cS F(vr) = 0[6]. On the contrary, the typical rupture propagation
velocity of earthquakes is 50−90 % of the Rayleigh or shear wave speed of the
Earth’s crust (e.g.,[11, 18]). Thus, both the release and dissipation rate of energy
must increase during dynamic rupture growth.

Another discrepancy is as follows. The singular crack model means that the slip
velocity diverges in the vicinity of the rupture front due to the square-root singular-
ity. This non-physical property must be somehow reduced by a dissipative process
neglected in the Broberg relationship; however, a problem arises even in a non-
singular crack model with a constant energy dissipation rate. According to numer-
ical simulations with a friction model equivalent to such dissipation, the peak slip
velocity appears an increasing function of r and t[4]. This tendency suggests that the
peak slip velocity of M9 earthquakes (e.g., duration T ∼ 150 s for the 2011 Tohoku
earthquake) should be 104 times greater than that of M1 earthquakes (e.g., T ∼ 15
ms for microearthquakes in a South African gold mine). However, seismic slip in-
version analyses revealed that they are both on the same order of 1 m/s (e.g., Ide
et al.[17] for M9; Yamada et al.[25] for M1). Therefore, a model of the dissipation
process that restricts slip velocity for such a wide magnitude range is required to
understand the physics of earthquakes.

In the following context, we show how dynamic rupture propagation can be mod-
eled in earthquake mechanics. We note the following important properties that have
been proposed by observational studies and should be modeled: 1) the rupture ve-
locity is 50–90% of the Rayleigh or shear wave velocity and 2) the slip velocity on
faults is finite and scale-invariant. Considering these properties, we focus on fric-
tion and off-fault damage to model the dissipation processes previously developed
by multiple seismologists. A previous numerical study has already suggested that
both friction and damage have a somewhat similar effect on the dissipation rate and
self-similarity of rupture propagation[3, 4]. In this study, we analytically illustrate
this similar effect by assuming self-similar crack growth.
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2 Formulation and physically reasonable models

2.1 Self-similar displacement, velocity, and strain

First, we confirm the following property for a function of X := x/t, where x ∈ Rn

(n = 2 or 3) and t > 0. Suppose that Φ(x, t) = Φ(X) is compactly supported along
x-axis, and suppΦ := {(x, t) | Φ ̸= 0} is self-similarly growing inside of Rn. Then,∫

Rn
Φ(X)dx = tn

∫
suppΦ(X)

Φ(X)dX (6)

where tn comes from Jacobian |∇X |−1, and the integral with respect to X is inde-
pendent of t. Via time-derivative, the following also holds:∫

Rn
∂tΦ(X)dx = tn−1

∫
suppΦ(X)

Φ(X)dX . (7)

A complete partial differential equation was given as an initial and boundary
value problem for the case of an arbitrary-shaped fault surface embedded in a finite
linear elastic body[13]. In this research, we simply consider that an already ruptured
region Γ (t) = suppD at time t is a simply connected subset of a planar fault

(
⊂ R2

)
embedded in an infinite homogeneous elastic and/or inelastic domain

(
= R3

)
.

Hereafter, we assume a self-similar system that satisfies eq.(4). The self-similarity
can be represented by a homogeneous function of degree N:

u(αx,αt) = αNu(x, t), (8)

for an arbitrary positive constant, α , which is satisfied if

u(x, t) = tNu(X) (9)

holds, where X := x/t again. From the definition of slip, (1),

D(x, t) = tND(X) (10)

also holds, and substituting it into eq.(3) and eq.(6) results in

M0(t) =µtN
∫

Γ
D(X)dx ∝ tN+2.

Therefore, through a comparison of this relationship with the empirical law (4), we
conclude that N = 1.

The spatial- and time-derivatives of eq. (8) yield that strain ε := 1
2

(
∇u+(∇u)T

)
and velocity v := ∂tu are homogeneous functions of degree N −1 = 0. Hence,
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v(x, t) =v(X), (11)
ε(x, t) =ε(X) (12)

are obtained. Specifically, eq.(11) indicates the scale invariance of peak slip velocity
mentioned in the Introduction if v is finite because of some dissipative process.

2.2 Linear PDE and Reasonable Modeling of Friction

Here, we consider the requirement to reproduce self-similar and scale-invariant peak
slip velocity. To avoid the emergence of infinite stress, strain, and velocity in the
vicinity of a dynamically propagating rupture front in numerical models, various
types of on-fault frictional property have been proposed. Particularly for the co-
seismic slip velocity range (∼ 1 m/s), a slip-weakening law

f (x, t) = ( fs − fd)ϕ
(
|D(x, t)|

Dc

)
+ fd (13)

has been widely employed, where fs and fd are the static and dynamic friction,
respectively, Dc is the characteristic slip distance, ϕ(s) := (1− s)H(1− s), and H(·)
is the Heaviside function (e.g.,[16, 2]). This model is approximately consistent with
results from laboratory stick-slip experiments of rock samples above ∼ 1 cm/s (e.g.,
[21]). If eq.(10) holds with N = 1, slip-dependent friction is represented as

f (x, t) = f (tD(X)). (14)

Also, the fracture energy (i.e., energy dissipation during rupture growth of unit area)
is constant under the model (13) because the energy is approximated as 1

2 ( fs −
fd)Dc[22]. In the following, we show that dynamic crack growth under the slip-
weakening friction law will not be self-similar as in eqs.(8) and (11).

We consider linear elasticity, where the stress change σ and strain are linearly
connected via the elasticity tensor C as follows

σ(x, t) = σ(X) =Cε(X).

We should assume that v and σ are zero for t ≤ 0 because velocity and stress per-
turbations are only caused by an earthquake occurring at t > 0. Therefore, the gov-
erning equation is the following boundary value problem with respect to X :

ρ∂tv(X) = ∇ ·σ(X), X ∈ R3\Γ
∂tσ(X) =C∂tε(X), X ∈ R3\Γ
σ(X)νΓ = f , X ∈ Γ
v → 0,σ → 0, |X | → ∞ (i.e., |x| → ∞ or t ↓ 0)

(15)
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where ρ is the material density and σνΓ is the traction change on Γ due to the
faulting process. In our model, the fault is a planar shear crack (i.e., D ·νΓ = 0 and
νΓ is constant), which does not change the normal stress on Γ . Therefore, σνΓ is
parallel to Γ (i.e.,

(
σνΓ ) ·νΓ = 0) and balances with the decrease in friction on the

sliding surface f .
So that eq.(15) represents a self-similar system, f = f (X) must hold, which tells

us that any slip-dependent friction (14) cannot completely reproduce self-similar
crack growth. Even if eq.(13) is introduced, f becomes almost constant for a suffi-
ciently larger value of t because of eq.(14). This means that the problem asymptotes
towards the singular crack problem, in which slip velocity diverges. In the same
way, the time-weakening friction, f ∝ ϕ((t − tx)/tc), where tx is the time at which
point x ∈Γ is ruptured and tc is a characteristic time[3], is also inappropriate for our
purpose. One possibility is a velocity-dependent friction f (V (X)). The above anal-
ysis shows that, for example, velocity-weakening[8] and velocity-strengthening[3]
friction models are reasonable for reproducing the scale-invariant peak slip velocity.

2.3 Energy Conservation Law with a Non-linear Damage Model

Many geological investigations have reported highly damaged rock surrounding
faults with observations of an enormous number of microcracks in fault outcrops
(e.g.,[7, 10]). The microcrack density per unit area of a cross section decays expo-
nentially as the distance from principal slip plane increases[10]. Therefore, intense
co-seismic stress concentration around the dynamic rupture front could generate
these microcracks, which could dissipate a non-negligible amount of energy by cre-
ating new micro-surfaces. Theoretical modeling consisting of linear elasticity and
on-fault friction, as discussed in the previous subsection, has played a crucial role
in understanding fault dynamics. However, modeling the damage generation is nec-
essary if it dominates during an actual energy dissipation process.

Several theoretical and numerical models of dynamic damage generation have
been proposed. As a realistic model, Yamashita[26] considered each opening mi-
crocrack distributed around the fault and executed a finite difference calculation. On
the other hand, continuum mechanics-based modeling has been developed by many
authors because such discrete modeling is not easy to handle. In the following, we
considier a constitutive law including plasticity, which is described as follows:

∂tσ =C (∂tε −∂tε p) , (16)

where the plastic strain ε p is zero in the early stage of deformation (i.e., small value
of σ ) and its rate ∂tε p depends non-linearly on σ ; see Dunham[9] for a specific case
of the evolution law of ε p. By introducing elastic and plastic parts of stress σ as
σ e :=Cε and σ p :=Cε p, eq.(16) can be written as

∂tσ = ∂t (σ e −σ p) . (17)
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Laboratory triaxial compression experiments using rock samples have shown that
the stress accumulation rate is almost constant during the early stage of loading
and decreases in a highly stressed state, as with eq.(17). Immediately after the
experiment, CT imaging revealed an enormous amount of microcracks inside the
sample[19]. Therefore, eq.(17) applies to damage modeling in the highly compres-
sional state.

Here, we discuss a macroscopic energy conservation law including off-fault plas-
tic deformation and on-fault friction. By taking an inner product of velocity, v, and
the equation of motion, ρ∂tv = ∇ ·σ , we get

ρ
2

∫
R3\Γ

∂t |v|2 dx+
1
2

∫
R3\Γ

∂t tr(σ eε)dx =
∫

Γ
V · f dx+

∫
R3\Γ

tr(σ p∂tε)dx,

(18)

where the boundedness of v,σ , and ε is assumed on the basis of a physical re-
quirement. See Hirano[14] for a detailed derivation; i.e., eq.(18) can be obtained by
substituting eq.(17) into eq.(3.1) of [14] although the original equation was based on
linear elasticity. On the left-hand side, the first and second terms represent the rate
of bulk kinetic energy and released bulk elastic strain energy, respectively. On the
right-hand side, the first term is the frictional work rate, which represents dissipated
energy due to friction, and the second term is similar to the virtual work rate due to
the plastic part of the stress. Thus, this second term refers to energy dissipation due
to plastic strain or damage.

3 Discussion and Conclusion: Macroscopic Equivalence of
Friction and Damage

Both the non-linear model with off-fault damage and the linear elastic model with
on-fault friction have contributed to our understanding of self-similar dynamic rup-
ture growth. In this section, we confirm that the energies of these two different mod-
els are macroscopically equivalent only if f = f (X) via a dimensional analysis. As
with above, v, ε , σ e, σ p, and V are assumed to be a function of X for scale invari-
ance.

Given eqs.(6) and (7), each term in eq.(18) is proportional to t2 if f = f (X) holds.
Otherwise ( f ̸= f (X)), the first term in the right-hand side is not proportional to t2,
which means that friction does not contribute to the energy dissipation for a suffi-
ciently large value of t. Eq.(18) also means that the total released potential energy
is proportional to t3 according to time integration, which was observed seismologi-
cally as eq.(4). Hence, we can conclude the following model patterns:

1. With linear elasticity and any self-similar friction, f (X) (e.g.,[8]), the energy
balance holds even though the second term of the right-hand side of eq.(18) is
absent.
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2. With linear elasticity and slip- or time-weakening friction (e.g.,[2, 3, 4]), self-
similarity is achieved not in the strict sense but as an asymptote. Here, the energy
dissipation rate is not proportional to t2, which implies the divergence of the slip
velocity as an analogy of the singular crack problem.

3. With the damage model and self-similar friction (e.g.,[9]), both show energy dis-
sipation propotional to t2 and, therefore, contribute to the energy balance.

4. With the damage model and non-self-similar friction (e.g.,[4]), only damage be-
comes a dominant dissipative process to satisfy the energy balance and self-
similarity.

In the above, the cited authors executed 2-D numerical simulations using each type
of model, while our analytical modeling is valid also for 3-D cases. A key finding
is that patterns 1, 3, and 4 will contribute to reproducing the sub-Rayleigh rup-
ture velocity and scale-invariant peak slip velocity. This conclusion means that we
can mimic damage rheology by considering an appropriate friction model, as con-
ducted numerically[4]. On the other hand, seismological observations cannot con-
clude whether damage or friction is more important for fault mechanics because
observations are typically conducted at far-field. Hence, seismological and geologi-
cal models can be independent, where the former can be achieved even under model
pattern 1, while the latter requires model patterns 3 or 4.
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