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Abstract In seismology, a faulting process as a source is linked with an elastic
wavefield as an observable not only via a partial differential equation (PDE) but
also via an integral equation. We conduct a review of these links and focus on the
latter in terms of forward/inverse analyses of kinematic/dynamic modeling, which
are investigated by many seismologists. Difficulties in the analyses are also men-
tioned: estimation and hyper-singularity of an integration kernel, determination of
the number of parameters for modeling, and assumed dynamic friction on faults.

1 Introduction

Earthquake faulting processes are modeled under a framework of dynamic frac-
ture mechanics, which relates rupture extension to displacement/stress perturba-
tions. The faulting processes feature 1) extension of a shear crack under compres-
sive states, 2) rupture velocity up to the speeds of Rayleigh waves, shear waves, or
rarely, compressional waves, and 3) balancing with friction of shear traction acting
on a slipping surface, etc. We here offer a brief overview of analyses of faulting
processes in seismology. We especially focus on an integral representation of dy-
namic rupture, which is equivalent to a time-dependent double layer potential. The
representation was first developed in the frequency domain[27] and subsequently
rewritten in the time domain[10]. Finally, Keiichi Aki completed it in a book[3, 4].
As mentioned in this article, the representation has been applied to seismic wave-
field simulations (Section 3.1), inverse analyses of fault slip evolution (Section 3.2),
and earthquake rupture simulations (Section 3.4). It has also been applied for inverse
analyses of co-seismic stress change on faults, although this has only been done in
a few studies (Section 3.3).
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2 Formulation

2.1 In Terms of PDE

We start from the equilibrium condition of an elastic body. Let the domain Ω
(
⊂ R3

)
be the elastic body (e.g., the Earth) including a bounded surface Γ (⊂ Ω) that rep-
resents an earthquake fault. Just before an earthquake, we assume that the elastic
body is under the equilibrium condition, represented as

∇ ·σ0(xxx) = 0, xxx ∈ Ω (1)

where σ0 is an initial stress tensor in Ω . In this state, σ cannot be correlated with
displacement or strain of Ω ’s interior because the Earth had undergone continu-
ous displacement and had no reference state of the displacement or strain. Thus,
when eq. (1) is satisfied, we set a reference for the displacement and strain. Next,
let un(xxx, t) be the n-th component of the displacement vector uuu(xxx, t)

(
∈ R3

)
at the

position xxx(∈ Ω\Γ ) and time t(≥ 0). As noted above, we assume that the displace-
ment vector field had zero initial conditions: uuu = ∂tuuu = 0 for t = 0. As in fig.1a, The
stress perturbation tensor σ in Ω and normal and tangential (i.e., shear) components
of the traction perturbation NNN and TTT , respectively, at ξξξ (∈ Γ ) are defined as

σ(xxx, t) =
1
2

CCC(xxx)
{

∇uuu(xxx, t)+(∇uuu(xxx, t))T
}
, (2)

NNN(ξξξ , t) = lim
xxx→ξξξ

{
νννΓ (ξξξ ) ·σ(xxx, t)νννΓ (ξξξ )

}
νννΓ (ξξξ ), (3)

TTT (ξξξ , t) = lim
xxx→ξξξ

{
σ(xxx, t)νννΓ (ξξξ )−NNN(xxx, t)

}
, (4)

where CCC =
(
ci jkl

)
is a fourth-order elasticity tensor, and νννΓ is a local unit normal

vector to Γ . Note that NNN and TTT are independent of the direction of the approach
of xxx to ξξξ because of continuity of traction for any surfaces embedded in elastic
bodies. Then, our concern is the following PDE and initial/boundary conditions for
the displacement and stress perturbations:

ρ(xxx)∂ 2
t uuu(xxx, t) = ∇ ·σ(xxx, t), xxx ∈ Ω\Γ , t ≥ 0 (5a)

uuu(xxx,0) = ∂tuuu(xxx,0) = 0, xxx ∈ Ω\Γ , (5b)

σ(xxx, t)ννν∂Ω (xxx) = 0, xxx ∈ ∂Ω (5c)

where ννν∂Ω is a local unit normal vector to ∂Ω . Moreover, one of the following
boundary conditions on the fault Γ is required at ξξξ ∈ Γ and t ≥ 0:{

lim
ε→0

[
uuu
(
ξξξ + ενννΓ (ξξξ ) , t

)
−uuu

(
ξξξ − ενννΓ (ξξξ ) , t

)]
= [uuu](ξξξ , t), (6a)

TTT 0(ξξξ )+TTT (ξξξ , t) = fff (ξξξ , t), (6b)
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where TTT 0, obtained by replacing σ in eq. (4) by σ0, is the background level of the
tangential traction, and fff is friction acting on the sliding surface Γ . In the right-
hand side of (6a), [uuu] is the discontinuity of the displacement field (Fig.1b). For
earthquake faulting, we assume non-opening and non-penetration conditions repre-
sented as [uuu] ·νννΓ = 0 because the fault is under a highly compressive state; thus we
regard [uuu] as slip. A boundary of the support of [uuu] is regarded as a rupture front,
and its propagation velocity is the rupture velocity. In this regard, analyses of rupture
propagation are included in analyses of [uuu].

2.2 In Terms of Integral Equation

In seismology, the essential idea is to relate the slip and displacement/stress pertur-
bation at arbitrary points. The following equation is called the representation theo-
rem of Aki & Richards[3, 4]:

uuu(xxx, t) =
∫

Γ
mmm∗∇ξξξ GGGdξξξ =

∫
Γ

{∫ t

0
mmm(ξξξ ,τ)∇ξξξ GGG(xxx,ξξξ , t − τ) dτ

}
dξξξ , (7)

or, with summation convention,

un(xxx, t) =
∫

Γ
mkl ∗∂ξl

Gnk dξξξ , (8)

mkl(ξξξ ,τ) =[ui](ξξξ ,τ)ν j(ξξξ )ci jkl(ξξξ ) (9)

where the asterisk ∗ denotes a convolution with respect to time from 0 to t, and
the contracted tensor mmm(ξξξ , t) defined in eq.(9) is called the seismic moment density
tensor or, hereinafter, moment tensor. In eqs. (7) and (8), the second-order Green
tensor GGG(xxx,ξξξ , t) is the solution to the following problem in Ω :

u(x,t)

ν∂Ω

elastic body Ω
T

νΓσνΓ

N

[u]

u−

u+

ξ

νΓ

fault Γfault Γ

(a) (b)

(c)

Fig. 1 Schematic illustrations of (a) slip [uuu] := uuu+−uuu− parallel to the fault surface Γ embedded
in the elastic body Ω , where uuu+ and uuu− are displacement above and beyond ξξξ ∈ Γ , respectively,
and (b) the normal component NNN and tangential component TTT of the traction perturbation σνννΓ due
to the slip. (c) uuu(xxx, t) is off-fault displacement due to the seismic wavefield.
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ρ(xxx)∂ 2

t Gin(xxx,ξξξ , t)
= ∂x j

{
ci jkl(xxx)∂xl Gkn (xxx,ξξξ , t)

}
+δinδ (xxx−−−ξξξ , t),

xxx ∈ Ω , t ≥ 0,(10a)

Gnk(xxx,ξξξ ,0) = ∂tGnk(xxx,ξξξ ,0) = 0, xxx ∈ Ω\{ξξξ}, (10b)

ci jkl(xxx)ν∂Ω
j (xxx)∂ξl

Gkn(xxx,ξξξ , t) = 0, xxx ∈ ∂Ω , (10c)

where δin is Kronecker’s delta, and δ (xxx− ξξξ , t) is Dirac’s delta function. Note that
xxx and ξξξ in eqs.(10a)–(10c) are taken as arbitrary points in Ω . Hence, eqs.(10a)–
(10c) hold in an intact elastic body without the fault surface Γ . In other words, GGG is
independent of Γ . Thanks to this nature, we can calculate GGG even if we do not know
all faults embedded in the Earth.

Some advantages of the use of eq.(7) in comparison with finite difference meth-
ods (FDMs) and finite element methods (FEMs) are the following. In eq.(7), we
consider quantities defined only on Γ to obtain the displacement at xxx while FDMs
and FEMs require any information all over Ω . Hence, the integral representation
requires very few numerically discretized elements. Moreover, when we consider
traction on Γ on the basis of eqs.(2)–(4), the boundary integral consists of the trac-
tion and moment tensor on Γ in an exact sense. On the other hand, in FDM or FEM,
those quantities are sometimes not defined strictly along the fault surface but defined
at different points each other in a staggered grid FDM or traditional FEM. Hence,
use of eq.(7) has an advantage in view of numerical accuracy and contributes to
some analyses in seismology as follows.

3 Practical Problems

3.1 Kinematic Forward Analysis of Seismic Wavefield: mmm 7→ uuu

Calculations of seismic wavefields are an important topic in terms of both geo-
physics and hazard assessment. Forward simulations of the wavefield are equivalent
to solving eqs.(5a)–(5c) with eq.(6a). In many cases, these simulations have been
performed using FDMs or FEMs with assumed spatio-temporal distributions of the
moment tensor called scenario earthquakes, which are based on past earthquakes
analyzed throughout the steps in Section 3.2, or on forward simulations shown in
Section 3.4. By using seismometer networks, the near-surface seismic wavefield is
directly observable in the aftermath of major earthquakes, allowing researchers to
validate the results of their simulations by comparing calculated uuu(xxx, t) at xxx ∈ ∂Ω
and the observed waveforms. Because this procedure is independent of force, trac-
tion, stress, and friction, this is a kinematic modeling of the seismic wavefield.

In principle, the simulations can be executed using eq.(7) if the kernel ∇ξξξ GGG is
available. In particular, reflection, refraction, scattering, and the intrinsic attenuation
due to the heterogeneity of the Earth’s interior are out of the scope for fundamental
understanding on characteristics of seismic radiation from a faulting process. For
this purpose, the kernel for an infinite homogeneous isotropic space has been em-
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ployed. While the complete form of the kernel can be found in eqs.(4.29)–(4.33) of
Aki & Richards[4], the following approximation holds in the far field[12, 3, 4]:

∂ξl
Gnk ∼

γnγkγl

4πρc3
d

∂tδ
(

t − r
cd

)
r

−
(

γnγk −δnk

4πρc3
s

)
γl

∂tδ
(

t − r
cs

)
r

, (11)

where γi = (xi −ξi)/r, r = |xxx−ξξξ |, and cd and cs are the speeds of dilatational (i.e.,
longitudinal or primary) and shear (i.e., transverse or secondary) waves, respec-
tively. Using this kernel and the characteristics of a circular crack model, the spectra
of far-field radiation have been studied analytically (e.g., [32, 25]) and numerically
(e.g., [25, 23]). Moreover, Hok & Fukuyama[17] executed numerical calculations
of ground motion considering a free surface, which is represented using the kernel
for the infinite medium. Although the free surface was completely flat in their sim-
ulation, their method is applicable to any surface topography. Hence, their method
will be applied to more scenario earthquakes for hazard assessment.

For more realistic simulations, a kernel that reflects the heterogeneity of the Earth
is required. One powerful tool to obtain it is called an empirical Green’s function
method[21], as follows. Time-derivative of eq.(7) results in

∂tuuu(xxx, t) =
∫

Γ
∂τ mmm∗∇ξξξ GGGdξξξ . (12)

This means that, if a support of ∂τ mmm is sufficiently small in space and time (i.e.,
∂τ mmm is pulse-like), we may assume that ∂τ mmm ∼ δ (ξξξ )δ (τ) holds. Therefore, an em-
pirically observed ground velocity caused by a small earthquake on Γ , which can
be actually observed by seismometers, approximates the kernel. Another tool to ob-
tain the kernel is a straightforward calculation. Instead of solving eqs.(10a)–(10c),
a propagator matrix method has widely been employed. In this method, only radial
and stratified heterogeneity of the Earth is assumed (i.e., CCC(xxx) = CCC(R), where R is
the distance from the center of the Earth, and CCC is a step-wise function). Addition-
ally, plane-wave decomposition, which is compatible with Snell’s law, is considered;
see the chapter 9 in [4] or 6.5 in [33] for details. These two methods are also appli-
cable to inverse analyses shown in Section 3.2.

3.2 Kinematic Inverse Analysis of Fault Slip: uuu 7→ mmm

After major earthquakes occur, seismologists investigate what happened on a fault
by analyzing seismograms, which record the ground velocity ∂tuuu(xxx, t) for xxx ∈ ∂Ω .
Thus the time-derivative of eq.(7) gives an inversion problem to obtain moment rate
∂τ mmm once ∂tuuuobs(xxx, t) is observed. As with the previous subsection, this is a kine-
matic modeling of faulting. Effectively, the following equation is widely assumed:
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∂tuuuobs(xxx, t) =
∫

Γ
∂τ mmm∗∇ξξξ GGGdξξξ + eee(xxx, t), (13)

where an error vector eee is added because synthetic waveforms calculated via the
integral on the right-hand side must not strictly agree with the observed ones owing
to some errors in the observation system, modeling process, and/or uncertainty of
the Green tensor. Discretized form of eq.(13) is reduced to

∂tuobs
n

(
xxxi, t j)= ∂τ mkl

(
ξξξ p

,τq)∂ξl
Gkn

(
xxxi,ξξξ p

, t j − τq) δξξξ δτ + en
(
xxxi, t j) , (14)

where i and j are up to the numbers of observation points and samples of time series,
respectively; and p and q are up to P and Q, the numbers of spatial and temporal
discretization for the source process, respectively. Using linear equation solvers, we
obtain some approximated solutions that minimize the norm of eee (e.g., a (damped)
least square solution[24]). However, P and Q are arbitrary, and the error reduces to
an infinitesimal value as P and Q increase. Overfitted solutions in such a case are
not robust, and we have to choose appropriate values of P and Q based on certain
criteria. In many cases, Akaike’s information criterion, which is equivalent to the
principle of maximum entropy, is employed[1]. Moreover, the Bayesian information
criterion has been employed to determine unknown hyperparameters that describe
the smoothness of the solution on the basis of prior constraints from a physical point
of view[2, 37]. More reviews on a practical procedure and results are found in [19],
and a project to validate various schemes to solve this problem is on-going[26].

3.3 Inverse Analysis of Fault Dynamics: mmm 7→ −TTT = TTT 0 − fff

In seismology, traction and friction acting on fault surfaces are not directly observ-
able. Given the inverted moment tensor mmm, investigating the evolution of co-seismic
traction TTT (xxx, t) is a challenging problem. Substituting eq.(7) to eq.(2)–(4), we obtain
a linear relationship between them as Γ :

TTT (xxx, t) = T

∫
Γ

mmm∗∇ξξξ GGGdξξξ , (15)

where the linear operator T maps any displacement field to shear traction perturba-
tion on Γ resulting from the combination of eqs.(2)–(4). This equation and a relation
−TTT (xxx, t) = TTT 0(xxx)− fff (xxx, t) from eq.(6b) enables the estimation of dynamic stress
drop, temporal variation of the difference between initial traction TTT 000 and friction fff
on the fault. In other words, it is not possible to estimate their magnitude separately
using only seismic data.

In general, after seismic inversion analyses to obtain the moment tensor, TTT is
inverted using an FDM[20, 28] or by assuming some characteristic form of the mo-
ment rate ∂τ mmm[36]. In principle, however, we can calculate the shear traction per-
turbation using eq.(15). This calculation is, in fact, not straightforward because the
integration kernel T∇ξξξ GGG(xxx,ξξξ , t − τ) has a hyper singularity for xxx ∼ ξξξ as shown in
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section 4; note that the integration on the right-hand side of eq.(15) is taken over Γ
including the evaluation point xxx of the left-hand side. If Ω is an infinite homoge-
neous isotropic medium and Γ is flat, it is represented by eq.(15) in the frequency-
wavenumber domain according to Bouchon[9]:

FTTT (kkk,ω) = Fmmm(kkk,ω)F
(
T∇ξξξ GGG

)
(kkk,ω), (16)

where Fourier transform with respect to space and time

F f (kkk,ω) =
∫

R1

{∫
Γ

f (xxx, t)eikkk·xxx dxxx
}

e−iωt dt

is applied. However, the spectrum of the kernel could diverge in the wavenumber do-
main due to the hyper-singularity. Indeed, the amplitude of the kernel

∣∣F(T∇ξξξ GGG
)∣∣

is an increasing function of |kkk|, such that an inverse Fourier transformation of (16)
exists only when mmm is sufficiently smooth. The difficulty due to the hyper-singularity
retained in the spectral domain is reduced by reguralizing the kernel in the time do-
main as discussed in Section 4.

3.4 Forward Analysis of Fault Dynamics: −TTT = TTT 0 − fff 7→ mmm

In mechanics, obtaining movements under given force and/or stress states is a for-
ward problem. In our case, the fault slip is obtained after assuming the stress drop.
This is quite a difficult problem because we cannot measure TTT 0 or fff independently
and seismologically. TTT 0 is considered to be exceedingly heterogeneous on faults
because Earth’s crust (i.e., surroundings of faults) has multi-scale structures. More-
over, in general, fff non-linearly depends on the intrinsic state variable θ of the slip-
ping surface[11, 29, 13, 5], normal stress NNN, slip [uuu], and slip velocity ∂t [uuu]. Hence,

TTT 0(xxx)− fff (θ ,NNN, [uuu],∂t [uuu]) =−T

∫
Γ

mmm∗∇ξξξ GGGdξξξ (17)

holds. Eq.(17) is a non-linear integro-differential equation of fault slip. To solve
a discretized form of eq.(17), the Boundary Integral Equation Method (BIEM, or
Boundary Element Method, BEM), which is widely employed for physical model-
ing, is used; see Ando[7] for its history and procedures. This is equivalent to solving
eqs.(5a)–(5c) with eq.(6b).

In many fields, including acoustics and electromagnetics, such an integral is
sometimes considered in the frequency domain. Analyses in the frequency domain
are powerful tools when the focus is on phenomena considering a certain frequency.
However, no specific frequency can be considered in fault mechanics. Instead, we
consider fracture criteria that must hold at every moment, such that eq.(17) can be
solved in the time domain. Under the maximum stress criterion, | fff | ≤ fs must hold
at any given time, where fs is the maximum static friction. Under the Griffith frac-
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ture criterion, the work rate G =
∫

Γ
fff · [u̇uu]dξξξ must be balanced with the fracture

energy GC at any given time.
Friction fff has been investigated throughout laboratory experiments with vari-

ous rocks. Recent reviews and advances on very-low slip velocity less than 10−2

m/s have been concentrated on the temporal evolution and physical background of
friction [11, 29, 13]. In fact, co-seismic slip velocity is typically within the range
of ∼ 1-10 m/s, where no consensus on a unified friction law is reached. The slip-
weakening law, which was originally introduced in a numerical modeling[18] and
consequently confirmed in a laboratory[30], is widely employed in simulations:

| fff |
|NNN| =(µs −µd)ϕ

(
D
Dc

)
+µd , (18)

where µs and µd are the static and dynamic friction coefficients, respectively.
D = |[uuu]| is slip distance, and ϕ(x) is a continuous and monotonically decreasing
function from ϕ(0) = 1 to ϕ(x)|1≤x = 0. In many studies, ϕ(x) = (1− x)H(1− x)
,where H(·) is the Heaviside function, is employed for simplicity. The character-
istic slip-weakening distance Dc is a critical parameter describing the law. In slip-
weakening friction, the path-independent integral that should be balanced with the
fracture energy is represented as follows[31]:

J−µd |NNN|Dc =
∫ Dc

0
(| fff |−µd |NNN|) dD,

where the left-hand side is path-independent. On the other hand, other friction laws
for the co-seismic slip velocity range has been suggested. For example, a velocity-
and state-dependent friction law based on thermodynamics on the slipping plane

| fff |
|NNN| =µs +α

V
V +Vc

−β
θ

θ +Vc
, (19)

∂tθ =
V −θ
Dc/Vc

, (20)

has been employed[5], where V = |∂t [uuu]|, and α,β , and Vc are positive constants.
Using this law, an observed pulse-like rupture, where the duration of slip is signifi-
cantly shorter than that of the entire faulting process[14], can be reproduced.

4 Summary and Discussion

As shown in the previous section, the representation theorem (7) reveals relation-
ships among seismic wavefield, slip, and stress drop on the fault and enables their
analysis; see summary in Table.1. In this section, we discuss a difficulty experienced
during the execution of the analyses.
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Table 1 Summary of forward/inverse analyses of fault kinematics/dynamics.

Forward Inverse
eq. (7) (13)

Kinematics based on assumed fault slip [uuu] observed seismic wavefield uuu
solving for seismic wavefield uuu fault slip [uuu]

eq. (17) (15)
Dynamics based on assumed stress drop −TTT estimated fault slip [uuu]

solving for fault slip [uuu] stress drop −TTT

In reality, calculations using these equations are not archived literally because of
the singularity of the integration kernel ∇ξξξ GGG. An asymptotic representation of ∇ξξξ GGG
is ∼ ∂tδ (t − r/v)/r for the far field (i.e., larger r) and ∼ δ (t − r/v)/r2 for the near
field (i.e., smaller r)[3, 4], where r = |xxx−−−ξξξ | is distance between the source and the
observation point, and v is the propagation speed of the wave.

In cases of the kinematic modeling in Section 3.1 and Section 3.2, the singular-
ity does not matter. For eqs.(7) and (13), the displacement field is observed at the
far field in many cases. Therefore, the singularity of ∼ ∂tδ (t − r/v)/r dominates,
and the denominator is non-singular in the far field. The numerator, Dirac’s delta
function, is unrealistic for modeling seismic waves because intrinsic attenuation of
Earth’s interior prevents the propagation of high-frequency components of waves
towards the far field. Hence, we should consider the effective application of some
low-pass filter F(t) to the kernel[38]:

∂tuuuobs ∼
∫

Γ
∂τ mmm∗

(
F ∗∇ξξξ GGG

)
dξξξ + eee.

As a result, the asymptotic form of the kernel ∼ ∂tF(t − r/v)/r is finite and man-
ageable in numerical schemes. Conventionally, F has been modeled as |FF(ω)| ∼
e−ω/Q in the frequency domain, where the dimensionless parameter Q is the frac-
tional energy loss per cycle; see section 5.5 in [4] or 6.6 in [33]. Needless to say,
the low-pass filtered kernel lacks shorter wavelength components. Thus, the resolu-
tion of the solution is reduced and depends on the characteristics of the attenuation.
Effectively, the power of the filter is reduced by more than ∼ 1 Hz in the frequency
domain, which is equivalent to smaller than ∼ 6 km in space because a typical di-
latational wave speed is ∼ 6 km/s in Earth’s crust. The lack of resolution affects not
only the fault slip inversion but also estimations of co-seismic potential energy re-
lease and kinetic energy radiation[15], which have been controversial in seismology.
Given the empirical power spectral density of slip distributions and theoretical con-
sideration, estimation of the energy may become more difficult than that of slip[15].

The situation is more severe in the mechanical modeling in Section 3.3 and Sec-
tion 3.4 because the near-field (i.e., xxx ∼ ξξξ ) traction perturbation must be considered
for eqs.(15) and (17). Aggravating the situation, the operator T consists of the first-
order derivative, such that the singularity of T

(
∇ξξξ GGG

)
∼ δ (t − r/v)/r3 becomes

dominant. The regularization of the hyper-singular integrals with integrations by
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parts is a method for solving this difficulty. For an infinite homogeneous isotropic
medium (i.e., Ω corresponds to R3, and C(xxx) is constant), Tada derived a regular-
ized kernel of displacement and traction perturbation for a quadrantal fault[34] and
a triangular fault[35]. In this manner, we can analyze the above integral equations
with a numerically modeled fault surface that consists of polygons. Moreover, com-
putational costs to treat Tada’s regularized kernel has been dramatically reduced
even with a free surface[6, 7]. Hence, the inverse modeling of co-seismic traction
perturbation in Section 3.3 via eq.(15) will be used more actively as in [17] while
the forward modeling in Section 3.4 with non-planar faults have already been ap-
plied in a homogeneous full-space[8] and a half-space[17, 6]. In addition, appli-
cations of regularized integral equations to heterogeneous elastic 2-D media are
developing (e.g., anti-plane faulting in two-welded half spaces[16], and piecewise-
homogeneous medium[22]). Because surroundings of faults are generally heteroge-
neous, the focus of future researches will be on numerical schemes to treat interac-
tions between such media and also dynamic faulting processes in the 3-D domain.
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