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Abstract During earthquakes, the rupture front propagates along faults at approx-
imately 40–90 % of the shear or Rayleigh wave velocity, with slip rate often con-
centrated in a narrow region behind the front. Past studies have considered this phe-
nomenon using a steady-state pulse-like rupture model and a slip-weakening friction
law; however, the results included a trade-off between rupture velocity and the scale
of the pulse, which prevents the rupture velocity from being uniquely determined. In
this study, we explore this issue and develop a model to determine rupture velocity
by considering a friction law based on a numerical simulation of a past study for
a slipping plane with its microscopic structure. We combine two models from past
studies to construct a relationship between rupture velocity and some tectonophysi-
cal/geological parameters.

1 Introduction

Earthquakes are dynamic shear fractures along faults embedded in the Earth’s crust.
The spatial extension of faults covers a broad range. Small-scale faults extend ∼
1mm in laboratory settings, and are equivalent to mineral grain boundaries, or ∼
10cm in situ features detectable in mines. Large-scale faults extend ∼ 1000km
along plate interfaces, and can host earthquakes of magnitude ∼ 9. Geological ob-
servations have suggested that fault thicknesses are negligible with respect to fault
length; therefore, regardless of scale, faulting is regarded as slip along a crack and
is treated using a fracture mechanics framework in earthquake source physics

Using seismological waveform inversions under such a framework, investiga-
tions into the spatio-temporal distribution of fault rupture and slip have shown that,
in some cases, entire fault surfaces do not go on slipping as the rupture propagates.
Instead, the slip rate concentrates in a narrow region behind the rupture front [9].
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This phenomenon, which is often referred to as pulse-like rupture, is distinct from
crack-like rupture, during which the slip rate is sustained along the entire fault sur-
face as the rupture extends (e.g., [9, 2, 3]).

Freund [5] theoretically simplified pulse-like rupture in 2-D by considering
mode-II dynamic rupture propagation of the pulse with constant length and velocity.
In his framework, the displacement field caused by the pulse was steady-state within
a moving coordinate with velocity equal to that of pulse propagation. This resulted
in a singular integral equation (the Airfoil equation) for slip rate inside of the pulse.

At the same time, frictional forces acting on the slipping plane are not negligible
because faults are located in the Earth’s crust, which is strongly compressed. There-
fore, a term representing friction must be introduced in the integral equation. A
simplified and classic way to model friction is to assume that constant dynamic fric-
tion works uniformly inside of a slipping region. Referred to as Coulomb’s friction
law, this has been accepted as an efficient approximation of friction. However, slip
rates and stress near the leading edge of the pulse diverge, even though the energy
release rate is finite [5]. This unphysical divergence can be removed by employing
a slip-weakening friction law proposed by Ida [11] and Palmer & Rice [14]. The
friction model, originally based on the results of stick-slip laboratory experiments,
states that friction is a monotonically decreasing function of slip amount. The model
takes a constant value equivalent to dynamic friction after the slip amount exceeds
a threshold (i.e., the critical slip distance).

Using the slip-weakening friction model, Rice et al. ([15] hereinafter, RSP) pro-
vided a solution of finite slip rate; however, their solution included a trade-off be-
tween propagation velocity (rupture velocity) and the length of the pulse, meaning
that these two could not be determined uniquely even after assuming values of max-
imum static friction, dynamic friction, initial stress acting on the fault, and surface
energy. In general, rupture velocity is a significant parameter when determining ki-
netics on and off the fault; for example, maximum slip rate [6], stress distribution
around the fault (e.g., RSP), and the dominant frequency of far-field seismic wave
[4]. From an observational point of view, rupture velocity is not negligibly small, but
approximately 40–90 % of the shear or Rayleigh wave velocity [7, 20]. However,
because of the trade-off, even the qualitative characteristic of rupture velocity can-
not be explained. For this reason, the theoretical determination of the propagation
velocity of pulse-like rupture remains problematic in earthquake source physics.

In this study, we show that the lack of determinability in the RSP framework
can be solved using the friction model of Hatano [8], which was developed using
a numerical experiment focused on observed microscopic fault structures. We first
introduce the singular integral equation for slip rate to describe the balance of trac-
tion inside of the pulse. Next, we review the theoretical model of RSP and expose
the trade-off between rupture velocity and length of the pulse. After introducing the
microscopic structure geologically observed in actual faults and numerically mod-
eled by Hatano [8], we finally show that the Hatano’s result contributes to solving
the trade-off problem. Moreover, we consider how rupture velocity and length of the
pulse depend on tectonophysical or geological parameters, and these are affected by
uncertainties in the parameters.
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2 Formulation

2.1 PDE and boundary conditions

We here define a 3-D coordinate, flat fault, and some physical quantities that are
essentially the same as those of Freund [5] and RSP. First, as shown in Fig.1,
we define domains in the x-z plane: Γ = {x,z|x ∈ (−∞,vrt),z ∈ R} and Γ ∗ =
{x,z|x ∈ (vrt −L,vrt) ,z ∈ R}(⊂ Γ ), where t ∈ R is time, and vr is the sub-sonic
propagation velocity of the moving rupture front toward the positive direction of
the x-axis. Physically, we regard the x-z plane as the fault, Γ as an already rup-
tured region, and Γ ∗ as a pulse (i.e., a temporarily slipping region). Next, we
define the y-axis perpendicular to the x-z plane and the displacement field as
uuu :

(
R3\Γ

)
×R3 (x,y,z, t) 7→ (ux,uy,uz)∈R3 due to slip on Γ . A support of the gap

of displacement (i.e., slip) [uuu] := uuu+− uuu− is Γ , where the superscript ± indicates
limy→±0. In addition, a support of the slip rate vvv := ∂t [uuu] is Γ ∗. We assume linear
elasticity for a uniform domain corresponding to R3\Γ , so our governing equation
corresponds to Navier’s equation:

∂ 2
t uuu = c2

d∇(∇ ·uuu)− c2
s ∇× (∇×uuu) in R3\Γ , (1a)

[uuu] ·nnn = [uy] = 0 in Γ , (1b)
(σnnn)+ = (σnnn)− in Γ , (1c)
(σnnn)±−

{
(σnnn)± ·nnn

}
nnn = fff (x,z, t)−TTT 0(x,z) in Γ ∗, (1d)

σ = 0 in |x| → ∞, |y| → ∞, (1e)

where cd and cs indicate the dilatational and shear wave velocities, respectively;
note that cd =

√
(λ +2µ)/ρ and cs =

√
µ/ρ hold, where λ and µ are the Lamé

constants of rock, and ρ is the density of rock. Furthermore, nnn indicates a unit nor-
mal to Γ , so that eq.(1b) physically represents a non-opening (i.e., slip) condition
on the fault. The tensor σ is the stress perturbation defined as

σ := λ (∇ ·uuu) III +µ
{

∇uuu+(∇uuu)T
}
, (2)

where III indicates the identity, so the boundary condition (1c) physically represents
continuity of traction on the fault. Moreover, LHS of eq.(1d) is the shear component
of traction, and fff and TTT 0 in RHS of eq.(1d) are considered to be friction and initial
traction applied to Γ , respectively. We assume that TTT 0 is uniform on Γ .

However, the PDE still lacks a boundary condition for |z| → ∞ and an initial con-
dition. Instead of assuming them explicitly, previous studies assumed a uniformity
of the system along the z-axis and a steady-state. We assume that the displacement
field does not depend on a position in the z-axis, which is formally equivalent to
uuu = uuu(x,y, t) and ∂zuuu = 0. Thus, the system no longer requires a boundary condition
for |z| → ∞. This assumption splits the governing equation into an in-plane problem
for ux,uy and an anti-plane problem for uz. Next, we assume that the displacement
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Fig. 1 Domains in the x-z plane. The light gray region indicates the ruptured region Γ , and the
intermediate gray region with width L indicates the temporarily slipping region Γ ∗. The dark gray
region with width R indicates the process zone of slip-weakening friction defined in eq.(6). All are
propagating rightward with velocity vr .

field depends only on (x− vrt,y), as with Γ and Γ ∗. This assumption allows us to
apply Galilean transformation x− vrt 7→ x′ to the system, which yields ∂t =−vr∂x′ .
Thanks to the assumption of steady-state, we do not require an initial condition.
Subsequently, we once again note x′ as x; therefore, the rupture front is located at
the origin of the x-y plane (i.e., Γ = (−∞,0)×R and Γ ∗ = (−L,0)×R).

2.2 Fundamental solution and integral equation

Regarding the representation of shear traction perturbations due to steady-state
propagation of the pulse, one of the simplest cases is to apply Galilean transfor-
mation to the moving dislocation model. In the dislocation model, [u] (x) = bH(−x)
holds when u = ux for a climbing edge dislocation (mode-II), or u = uz for a screw
edge dislocation (mode-III), and where b is the magnitude of the Burgers vector, and
H(·) is the Heaviside function. Noting (σnnn)± = (Txy,Tyy,Tzy)

T , these three compo-
nents due to the dislocations are obtained as:

(Txy,Tyy,Tzy)
T =

µF(vr/cs)

2π
b
x
×

{
(1,0,0)T for mode-II,
(0,0,1)T for mode-III,

(3)

where

F(vr/cs) =


4αdαs−(1+α2

s )
2

αs(1−α2
s )

for mode-II,

αs for mode-III,
(4)
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and where αd =

√
1− (cs/cd)

2 (vr/cs)
2, and αs =

√
1− (vr/cs)

2 (e.g., [22]). Slip
rate due to the dislocation can be represented as bvrδ (x) because v(x) = ∂t [u](x) =
−vr∂x[u](x) holds where δ (·) is Dirac’s delta function. This means that v−1

r v(x) is
identical to the spatial distribution of b, and non-zero components in (3) can be
represented as a convolution of v−1

r v(x) and 1/x for arbitrary v as:

T (x) =− µF(vr/cs)

2vr

∫
Γ ∗

v(ξ )
ξ − x

dξ
π

, (5)

where T = Txy for mode-II or T = Tzy for mode-III. According to the boundary
condition (1d), (σnnn)± is equivalent to f (x)− T0 (the x component of fff − TTT 0 for
mode-II or the z component of fff −TTT 0 for mode-III). Therefore, T (x) is a function
related to friction and initial traction, and v(x) is an unknown function. The Airfoil
equation, a singular integral equation (5), can be turned into the Riemann-Hilbert
problem, and its general solution was obtained by [13].

3 Friction modeling

3.1 RSP modeling revisited

In general, a solution of eq.(5) has a square-root singularity behind the rupture front
(i.e., v(−ε) ∝ 1/

√
ε for a sufficiently small positive value of ε). As discussed in 1,

this singularity can be removed under slip-weakening friction. RSP considered f (x)
and T (x) at x ∈ Γ ∗ = (−L,0) as follows:

T (x)+T0 = f (x) =

{
Ts +

Ts−Td
R x for −R < x ≤ 0,

Td for −L ≤ x ≤−R,
(6)

where Ts and Td are the maximum static friction and the dynamic friction, respec-
tively, and should satisfy the relationship 0 ≤ Td ≤ T0 < Ts. Note that eq.(6) is an
actual form of eq.(1d), and the LHS of eq.(6) physically represents the total shear
traction temporarily acting on the pulse. According to eq.(6), the maximum static
friction occurs at the rupture front (x = 0), and constant dynamic friction occurs
when −L < x < −R. Moreover, there exists a process zone for the weakening of
friction at −R < x ≤ 0. Under this setting, [u] increases and f decreases as x de-
creases in Γ ∗ if v ≥ 0. Therefore, friction is a monotonically decreasing function of
the slip amount. Thus, RSP considered that eq.(6) corresponds to the slip-weakening
friction law.

By solving the Airfoil equation, which consists of eqs.(5) and (6), RSP obtained
a condition to remove the square-root singularity as follows:
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1
1+S

=
θ ′

π
− θ ′− sinθ ′

2π sin2 (θ ′/2)
, (7)

where S = (Ts −T0)/(T0 −Td), and θ ′ = 2arcsin
√

R/L. This condition shows that
only R/L is determined uniquely after S is given. In other words, the absolute values
of L and R cannot be determined uniquely even after S is given.

RSP also considered the energy release rate due to the propagation of the pulse,
which can be calculated via:

G =
∫ D

0
{ f ([u])−Td}d[u], (8)

where D := limt→∞[u] is the total locked-in displacement [14]. As a result, they
concluded that:

G =
(Ts −Td)

2 R
µF(vr/cs)

(
θ ′

π
− θ ′− sinθ ′

2π sin2 (θ ′/2)

)(
θ ′− sinθ ′ cosθ ′

4sin4 (θ ′/2)

)
. (9)

Combining eqs.(7) and (9), we can write Ψ as a relationship between some param-
eters:

Ψ (Ts −Td ,S,G,R,vr) = 0. (10)

In eq.(10), a frictional parameter Ts −Td , the stress ratio S and a material quantity
G can be regarded as prescribed mechanical parameters independent of kinematics.
On the other hand, R and vr are kinematic parameters that describe an apparent
movement of the system. Hence, in view of mechanics, R and vr are determined
after the mechanical parameters are given. However, eq.(10) means that there exists
a trade-off between R and vr, which cannot be determined uniquely on the basis of
this single relationship. Therefore, another relationship between R and vr needs to
be identified.

3.2 Modeling the microscopic structure of fault planes

During modeling, prior studies neglected fault thickness; although, geologists have
observed small but finite thicknesses of localized shear layers in fault outcrops.
These layers are full of a finely crushed matrix (or fault gouge) and have thick-
nesses of 10−4m to 102m, roughly proportional to 10−4 times fault length (e.g.,
[16, 18]). Therefore, the regions Γ and Γ ∗ in our notation are extended to Γ =
{x,y,z|x < 0,y ∈ B,z ∈ R} and Γ ∗ = {x,y,z|x ∈ (−L,0) ,y ∈ B,z ∈ R}, respectively,
where B := (−H0/2,+H0/2), and a small constant H0 is the thickness of the gouge
layer. The fault gouge likely plays a significant role in the energy dissipation pro-
cesses of faulting. Hatano [8] modeled each particle of a granular layer as an elastic
sphere and numerically simulated the macroscopic frictional behavior of the gouge
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layer using a discrete element method. In his model, the granular layer was sand-
wiched between two rigid walls, one of which was forced to slide at a given rate.
When the rate was changed in a step-like manner, frictional resistance between the
granular layer and the wall varied continuously; on this basis, Hatano [8] obtained a
relaxation time τ for the transient variation, which was independent of the slip rate
and was given as:

τ = cH0

√
ρp

P
, (11)

where c ∼ 1.0 is a numerical constant, ρp is density of the particle, and P is pres-
sure acting on the layer. This means that the relaxation time of friction is prescribed
prior to slippage. Moreover, Hatano [8] suggested that τ can roughly represent the
scale of transient time from the maximum static friction to dynamic friction. There-
fore, these findings presented the possibility for a model of rupture propagation that
incorporated the weakening process of friction.

3.3 Determination of kinematic parameters

As discussed, our x was originally x− vrt before the Galilean transformation was
applied, while the relaxation time is eq.(11) if the slipping plane consists of a gran-
ular layer. By returning x into x− vrt and considering eq.(6), we find that the slip-
weakening friction assumed by RSP has a relaxation time of R/vr. Hence,

τ =
R
vr

(12)

can be regarded as a constant. It is clear that eq.(12) represents another trade-off
between R and vr; therefore, the two parameters are uniquely determined after sub-
stituting eq.(12) into (10). Moreover, by taking eq.(11) into account, we obtain a
relationship between the parameters Ts − Td ,S,G,H0,ρp,P, and vr. Furthermore,
considering eqs.(5), (7) and (12), we are also able to uniquely determine slip rate
v(x), slip [u](x) =−v−1

r
∫ x

0 v(ξ )dξ , and pulse length L.

4 Discussion

4.1 Analysis with huge uncertainties of parameters

In general, the tectonophysical and geological parameters Ts,Td ,T0,G,H0 and P
contain huge uncertainties, of which we often know only the order. Therefore, we
propose only a rough determination of kinematic parameters (e.g., vr,R and L) de-
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pending on the order. By defining R0 := limvr→0 R and regarding eqs.(9), RSP ob-
tained the following:

R
R0

=
F(vr/cs)

F(0)
. (13)

On the other hand, eq.(12) is equivalent to the following:

R
R0

=
τcs

R0

vr

cs
. (14)

Fig.2 shows a curve and line based on eqs.(13) and (14), respectively, where their
intersection provides actual values of vr/cs and R/R0. The slope of the line, which
corresponds to the coefficient τcs/R0 in eq.(14), depends on the aforementioned
uncertain parameters, while eq.(13) depends only on vr/cs. Therefore, we are only
able to consider the order of the coefficient. With respect to Fig.2, we make the
rough divisions: 

vr/clim � 1 if τcs/R0 � 1,
vr/clim ∼ 0.7 if τcs/R0 ∼ 1,
vr/clim ∼ 1 if τcs/R0 � 1,

(15)

where clim is the Rayleigh wave velocity for mode-II, or the shear wave velocity for
mode-III. As discussed in 1, vr/clim is usually approximately 40–90 %. Hence, we
conclude that: 1) rupture velocity of several tens of percent for clim is possible when
τcs/R0 is near unity; 2) rupture velocity approximately equivalent to clim is possible
when τcs/R0 is negligible; and 3) slow rupture velocity is rarely observed, likely
because τcs/R0 is not sufficiently greater than unity.

4.2 Applicability to interfacial problem

Faults commonly lie along material interfaces (e.g., plate boundaries and other tec-
tonic lines), and the theoretical modeling discussed in 2 and 3.1 has been extended
to such interfacial problems [21, 1, 10]. Especially, in the case of mode-II, normal
stress perturbation inside of an interfacial pulse, the second component of eq.(3), is
not zero, but rather is Dirac’s delta function with the sign dependent on the direc-
tion of rupture propagation [21]. Hence, many studies have predicted asymmetric or
unidirectional rupture along material interfaces, while others have actually observed
[17, 12]; however, a theoretical understanding of them is still needed.

Hirano & Yamashita [10] extended the method of RSP and derived a Carleman-
type singular integral equation (c.f., [19]) instead of eq.(5). On solving the equation,
they found a relationship between some parameters (i.e., generalization of eqs.(7)),
which removed divergence of the slip rate near the leading edge of an interfacial
pulse. This generalized relationship included not only S and R/L, but also the direc-
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Fig. 2 Plot of eq.(13), where
blue denotes mode-II and
green denotes mode-III, and
eq.(14). For mode-II, cd/cs =√

3 is assumed, which is
equivalent to Poisson’s ratio
of 1/4 and an approximate
value for crustal rocks. Zero
of the curve for mode-II is
identical to the Rayleigh wave
velocity.
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tion and velocity of pulse propagation. Moreover, G for the interfacial pulse can be
determined by using their solution for slip rate and eq.(8). Therefore, we can now
extend eq.(10) and our modeling to determine propagation velocity of the interfacial
pulse, which can be asymmetric or unilateral.

5 Conclusions

We reviewed the methods of RSP for modeling the propagation of the pulse-like
rupture with the slip-weakening friction law and highlighted their difficulties in the
determination of the propagation velocity of pulse-like rupture. Considering the fric-
tional model of Hatano [8], we proposed determinability of the propagation velocity.
The propagation velocity depends on some tectonophysical/geological parameters,
which usually have huge uncertainty, and we discussed the velocity only on the ba-
sis of orders of the parameters. Even with such uncertainty, we found that we could
roughly estimate the propagation velocity and discuss why propagation velocity is
not negligibly low. Moreover, we showed that our method can be extended to a
problem of interfacial rupture propagation, which is important and controversial in
earthquake source physics.
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