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Fig.1 Various STFs and their spectra (data from SCARDEC).

Xt(2)

T (2)

Fig.2: Two Bessel processes,
solutions of eq.(2)

1. Introduction

Inverted fault motions are diverse (Fig.1), but statistically show some empirical laws.

This study aims to explore a stochastic model to represent empirical laws, which may
contribute to the understanding of fault mechanics/stochastic ground motion simulation.

Abbreviation

• : Position on a fault plane 

• : Slip distribution along 

• : Slip rate distribution

• : Source time function (STF)  moment rate function

• : Duration of slip (i.e., )

Point source ( )

The STFs follow:

1. Non-negative,  compactly
supported, and dominantly
unimodal [Yin+ 2021, SRL].

2. -model:  Fourier
amplitude follows a power
law,  i.e.,  

for [Boatwright 1980, BSSA; Abercrombie 1995, JGR].

3. The cube law: , [Uchide & Ide 2010, JGR; Meier+ 2016, GRL ]

and [Houston 2001, JGR]

4. The GR law: The probability density of  is approximated as 
[Gutenberg & Richter 1944, BSSA].

The above four laws are satisfied [Hirano 2022,
Sci.Rep.] if

where  and  are the Bessel processes,
solutions of a stochastic differential equation:

(Fig.2&3), where  is the -value of the GR law, and  is a standard Brownian noise.

Finite fault ( )

5. -model:  Spectral  fall-off  rate  of  Fourier  amplitude  of  the  final  slip  in  the
wavenumber domain is ; that is

where  is the wavenumber vector [Herrero & Bernard 1994, BSSA].

6. Ballistic rupture propagation slightly slower than the wave speed.

Mathematical model for all (six) empilical laws?

Spatial distribution  Stochastic Partial Differential Equation (SPDE) for  is required. Fig.3: Synthetic 
by eqs.(1) and (2).

2. Mathematical model extension

Starting from the Bessel process:

Can we replace  by a space-time white noise?

NO!  because  it  generates  noise  everywhere  (i.e.,  even  currently  non-
slipping region during the earthquake may slip due to the noise).

The squared Bessel process

 and Itô's lemma yields the following:

which generates the noise only at .

Rupture (or energy) propagation in space

We consider the following system:

where   is  non-negative  slip  rate,  and   is  Dirac's  -function  for
ignition.

If , the above is a wave equation (Figs.4&5).

 Differentiate eq.(4), then substitute eq.(3) into it.

Fig.4: Solution  for a 2-D wave equation ( ).

Fig.5: Solution  with constant friction ( , ).

If 

The SPDE is  accompanied by noise only at  the slipping region ( ),
which may reflect hight-frequency radiation due to fault roughness and/or
scattering by the surrounding region including fault damage zone (Fig.6).

Fig.6: Schematic illustration of the noise term.
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Fig.7: Final slip (top), slip evolution (middle triangle), and slip rate (bottom
triangle) following the stochastic 1-D model with . The four solutions
died at , but the durations are determined by the stochastic process.
Spectra are for the final slip in the wavenumber domain (blue) and the STF in
the frequency domain (green).
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Fig.8: Histogram of event duration for
various values of friction . Stronger
friction ( ) seems to yields a power
law. Lines indicate  and .

3. Numercal solutions for 1-D case

We solved the system numerically (Finite difference, Euler-Maruyama scheme) with .

Cases for  show various slip
evolution (Fig.7).

Spontaneous termination in many cases.

 The friction term  always tranquilizes the

solution,  while  the  noise  term  
strongly perturbs during a high slip rate. The
termination follows stochastically.

Heterogeneous  final  slip  distributions
following  -type  spectral  fall-off  rate  in
the wavenumber domain (blue in Fig.6).

 After termination of slip ( ),  eq.(4)
becomes

where  is the Fourier transform of , and

 is the 1-d wavenumber. Hence .

Predominantly  unilateral  propagation
slightly slower than the wave speed (edges
of gray triangles).

 Sometimes,  the  front  cannot  propagate
stochastically due to the noise, which delays
the macroscopic propagation speed.

Frequent  backward  propagation  like
boomerang rupture [Hicks+ 2020, Nat.Geos.].

-type spectra (green in Fig.6).

 After  integration  w.r.t.  space  (
),  the  solution  is  essentially

Brownian motion.

Power law for event duration (Fig.8)

 for .

Shorter events dominate comparing to the GR law ( ) because of the dimension ( )?

In 1-D, , implying that .

4. Numerical solutions for 2-D case

Fig.9: Evolution of  with  and .

Fig.10: Evolution of  with  and .

Frictionless case (Fig.9)

The slip rate diverges.

Frictional case (Fig.10)

The slip rate terminates spontaneously.

-model and the cube law are satisfied.

No macroscopic heterogeneity.

No variation in event size.

Why doesn't it work?

Integrating the SPDE over currently ruptured region  for :

meaning that amplitude of deceleration is proportional to the current area .

For  the  GR  law,  the  probability  of  rupture  termination  in  each  time  step  must  be

proportional to [Scholz 1986, BSSA].

The friction term must have some different structure(?)

5. Conclusions

Stochastic kinematic source modeling

Many empirical laws should be satisfied statistically.

Potentially contributes to fault dynamics/strong ground motion simulation.

The point source model works well [Hirano 2022 Sci.Rep.].

The 1-D model satisfies some of the laws, except -type spectrum and the GR law.

The 2-D model does not show diversity: almost deterministic and characteristic functions.

Future work?

Modification of the 2-D model that satisfies all the empirical laws and coincides with the
point source model after integration w.r.t. space.
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x Γ (∈ Rn,  n = 0, 1, 2)

D(x, t) Γ

V (x, t) := Ḋ

S(t) := ∫
Γ

V (x, t) dx ∝

T T < t ⇒ V ≡ 0

n = 0

ω−2

|FS(f)| ∼ f −2

≪ f
1
T

∫
t

0
S(τ) dτ ∼ t3 (t ≪ T )

M0 := μ ∫ T
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S(τ) dτ ∝ T 3

M0 P(M0) ∝ M
−
0 ∝ T −2

2
3

S(t) = ∫
t

0
X

(1)
s X
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t−s ds, (1)

X
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t X
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t

dXt = + dBt (2)
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∣
∣
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R2
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∣
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∼ |k|−2,

k  (∈ R2)

⇒ D S(t)

dX = + σ dB.
μ − 1

2
dt

X

dB

V := X2

V̇ = μ + 2σ√V Ḃ,

V > 0

Ḋ =V+ = (V + |V |) ,

V̇ =ΔD + μ + 2σ√V+ Ḃ + δ(x) H(t),

(3)

(4)

1
2

V+ δ(x) δ

σ = 0
∵

V+ μ = σ = 0

V+ μ < 0 σ = 0

σ ≠ 0

V > 0

σ = 1

μ = −3
t ∼ 0.5

μ
μ < −3

N ∝ T −2 T −3

μ = −3

∵ μ

2√V+Ḃ

k−2

∵ t → ∞

−ΔD = δ(x) ⇔ (4πk)2D̂ = 1,

D̂ D

k D̂ ∝ k−2

∵

ω−1

∵
Δ ↦ 0,  δ ↦ 1

N ∝ T −3 μ < −3

N ∝ T −2 n = 1

M0 ∝ T 2 P(M0) ∝ T − 4
3

V μ = 0 σ = 1

V μ = −3 σ = 1

ω−2

A(t) t > 0

∫
A(t)

V̇ dx =Ṡ ,

∫
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(ΔD + μ + 2σ √V+ Ḃ + δ(x) H(t)) dx =μ A(t) + 1,
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